Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As the number of weight parameters in deep neural networks (DNNs) continues growing, the demand for ultra-efficient DNN accelerators has motivated research on non-traditional architectures with emerging technologies. Resistive Random-Access Memory (ReRAM) crossbar has been utilized to perform insitu matrix-vector multiplication of DNNs. DNN weight pruning techniques have also been applied to ReRAM-based mixed-signal DNN accelerators, focusing on reducing weight storage and accelerating computation. However, the existing works capture very few peripheral circuits features such as Analog to Digital converters (ADCs) during the neural network design. Unfortunately, ADCs have become the main part of power consumption and area cost of current mixed-signal accelerators, and the large overhead of these peripheral circuits is not solved efficiently. To address this problem, we propose a novel weight pruning framework for ReRAM-based mixed-signal DNN accelerators, named TINYADC, which effectively reduces the required bits for ADC resolution and hence the overall area and power consumption of the accelerator without introducing any computational inaccuracy. Compared to state-of-the-art pruning work on the ImageNet dataset, TINYADC achieves 3.5× and 2.9× power and area reduction, respectively. TINYADC framework optimizes the throughput of state-of-the-art architecture design by 29% and 40% in terms of the throughput per unit of millimeter square and watt (GOPs/s×mm 2 and GOPs/w), respectively.more » « less
-
Applications in the cloud are vulnerable to several attack scenarios. In one possibility, an untrusted cloud operator can examine addresses on the memory bus and use this information leak to violate privacy guarantees, even if data is encrypted. The Oblivious RAM (ORAM) construct was introduced to eliminate such information leak and these frameworks have seen many innovations in recent years. In spite of these innovations, the overhead associated with ORAM is very significant. This paper takes a step forward in reducing ORAM memory bandwidth overheads. We make the case that, similar to a cache hierarchy, a lightweight ORAM that fronts the full-fledged ORAM provides a boost in efficiency. The lightweight ORAM has a smaller capacity and smaller depth, and it can relax some of the many constraints imposed on the full-fledged ORAM. This yields a 2-level hierarchy with a relaxed ORAM and a full ORAM. The relaxed ORAM adopts design parameters that are optimized for efficiency and not capacity. We introduce a novel metadata management technique to further reduce the bandwidth for relaxed ORAM access. Relaxed ORAM accesses preserve the indistinguishability property and are equipped with an integrity verification system. Finally, to eliminate information leakage through LLC and relaxed ORAM hit rates, we introduce a deterministic memory scheduling policy. On a suite of memory-intensive applications, we show that the best Relaxed Hierarchical ORAM (ρ) model yields a performance improvement of 50%, relative to a Freecursive ORAM baseline.more » « less
-
Intel's SGX offers state-of-the-art security features, including confidentiality, integrity, and authentication (CIA) when accessing sensitive pages in memory. Sensitive pages are placed in an Enclave Page Cache (EPC) within the physical memory before they can be accessed by the processor. To control the overheads imposed by CIA guarantees, the EPC operates with a limited capacity (currently 128 MB). Because of this limited EPC size, sensitive pages must be frequently swapped between EPC and non-EPC regions in memory. A page swap is expensive (about 40K cycles) because it requires an OS system call, page copying, updates to integrity trees and metadata, etc. Our analysis shows that the paging overhead can slow the system on average by 5×, and other studies have reported even higher slowdowns for memory-intensive workloads. The paging overhead can be reduced by growing the size of the EPC to match the size of physical memory, while allowing the EPC to also accommodate non-sensitive pages. However, at least two important problems must be addressed to enable this growth in EPC: (i) the depth of the integrity tree and its cacheability must be improved to keep memory bandwidth overheads in check, (ii) the space overheads of integrity verification (tree and MACs) must be reduced. We achieve both goals by introducing a variable arity unified tree (VAULT) organization that is more compact and has lower depth. We further reduce the space overheads with techniques that combine MAC sharing and compression. With simulations, we show that the combination of our techniques can address most inefficiencies in SGX memory access and improve overall performance by 3.7×, relative to an SGX baseline, while incurring a memory capacity over-head of only 4.7%.more » « less
-
As more critical applications move to the cloud, there is a pressing need to provide privacy guarantees for data and computation. While cloud infrastructures are vulnerable to a variety of attacks, in this work, we focus on an attack model where an untrusted cloud operator has physical access to the server and can monitor the signals emerging from the processor socket. Even if data packets are encrypted, the sequence of addresses touched by the program serves as an information side channel. To eliminate this side channel, Oblivious RAM constructs have been investigated for decades, but continue to pose large overheads. In this work, we make the case that ORAM overheads can be significantly reduced by moving some ORAM functionality into the memory system. We first design a secure DIMM (or SDIMM) that uses commodity low-cost memory and an ASIC as a secure buffer chip. We then design two new ORAM protocols that leverage SDIMMs to reduce bandwidth, latency, and energy per ORAM access. In both protocols, each SDIMM is responsible for part of the ORAM tree. Each SDIMM performs a number of ORAM operations that are not visible to the main memory channel. By having many SDIMMs in the system, we are able to achieve highly parallel ORAM operations. The main memory channel uses its bandwidth primarily to service blocks requested by the CPU, and to perform a small subset of the many shuffle operations required by conventional ORAM. The new protocols guarantee the same obliviousness properties as Path ORAM. On a set of memory-intensive workloads, our two new ORAM protocols - Independent ORAM and Split ORAM - are able to improve performance by 1.9x and energy by 2.55x, compared to Freecursive ORAM.more » « less
An official website of the United States government
